CFD Simulation of Effect of Vortex Ring for Squid Jet Propulsion And Expeiments on a Bionic Jet Propulsor

نویسندگان

  • Li Jian
  • Wang Zhenlong
چکیده

Using jet propulsion, squid can swim at high speed or at low speed with good maneuverability, which makes them quiet valuable to be studied for biomimetic purposes. Vortex rings usually occur in the highly-unsteady jet flow in squid, and they play quite important roles in the jet propulsion of squid. This paper tries to investigate the squid jet structure by computational fluid dynamics (CFD) analysis. A simplified squid body model was established. The mantle motion during jet locomotion was explicitly included into the simulations by using a deforming mesh. By solving the 2D-axisymmetric, incompressible, laminar, unsteady Navier–Stokes equations, different vortex evolution behaviors were observed depending on different mantle contraction velocities and nozzle diameters. An important parameter, the formation number of the vortex rings, L/D, which decide the propulsive efficiency of jet propulsion directly, was also discussed in this paper. The numerical results show that adult squid propel themselves by long jet flows with a large formation number, L/D. The results also prove that smaller squid have larger relative funnel diameter. Interaction of vortex rings was simulated in two jet process, which might interpret squid increase their contraction frequencies with elevated swimming speed. To validate the force generated in the simulation, a bionc squid mantel jet propulsor is investigated and tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vortex Rings in Bio-inspired and Biological Jet Propulsion

Pulsed-jets are commonly used for aquatic propulsion, such as squid and jellyfish locomotion. The sudden ejection of a jet with each pulse engenders the formation of a vortex ring through the roll-up of the jet shear layer. If the pulse is too long, the vortex ring will stop forming and the remainder of the pulse is ejected as a trailing jet. Recent results from mechanical pulsedjets have demon...

متن کامل

Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.

Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail...

متن کامل

Jet flow in steadily swimming adult squid.

Although various hydrodynamic models have been used in past analyses of squid jet propulsion, no previous investigations have definitively determined the fluid structure of the jets of steadily swimming squid. In addition, few accurate measurements of jet velocity and other jet parameters in squid have been reported. We used digital particle imaging velocimetry (DPIV) to visualize the jet flow ...

متن کامل

Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers.

Squid paralarvae (hatchlings) rely predominantly on a pulsed jet for locomotion, distinguishing them from the majority of aquatic locomotors at low/intermediate Reynolds numbers (Re), which employ oscillatory/undulatory modes of propulsion. Although squid paralarvae may delineate the lower size limit of biological jet propulsion, surprisingly little is known about the hydrodynamics and propulsi...

متن کامل

Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.

The dynamics of pulsed jetting in squids throughout ontogeny is not well understood, especially with regard to the development of vortex rings, which are common features of mechanically generated jet pulses (also known as starting jets). Studies of mechanically generated starting jets have revealed a limiting principle for vortex ring formation characterized in terms of a ;formation number' (F)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016